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Abstract
The Weibel instability and the induced magnetic field are of great importance for both astrophysics and inertial
confinement fusion. Because of the stochasticity of this magnetic field, its main wavelength and mean strength, which
are key characteristics of the Weibel instability, are still unobtainable experimentally. In this paper, a theoretical model
based on the autocorrelation tensor shows that in proton radiography of the Weibel-instability-induced magnetic field,
the proton flux density on the detection plane can be related to the energy spectrum of the magnetic field. It allows us to
extract the main wavelength and mean strength of the two-dimensionally isotropic and stochastic magnetic field directly
from proton radiography for the first time. Numerical calculations are conducted to verify our theory and show good
consistency between pre-set values and the results extracted from proton radiography.
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1. Introduction

The Weibel instability, which is mainly characterized as
being able to generate strong magnetic fields, is of great
significance for a range of scenarios in plasma physics,
and has been studied for many decades since it was first
proposed[1–4]. For example, in astrophysics, the magnetic
field generated in the Weibel instability is believed to be the
leading mechanism for shock formation in weakly magne-
tized plasmas[5, 6]. While in inertial confinement fusion, the
magnetic field generated by the Weibel instability is found to
play an important role in the transport of fast electrons and
the thermal isotropization of energy flows[7–11].

The classical Weibel instability, which is referred as the
thermal anisotropy-driven Weibel instability, arises from
electron thermal anisotropy and can increase when a plasma
slab is expanding into the vacuum[12]. Besides, the Weibel
instability can also be driven by an ion flow, which includes
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a counterstreaming ion flow but a collisional and isotropic
electron population, referred as the ion-driven Weibel
instability[13]. Both kinds of instability could result in
current filaments longitudinal to the electron or ion flow, and
toroidal magnetic fields around the current filaments[14, 15].
The strength and spatial wavelength in the transversal plane
of the magnetic field are key parameters for the estimation
of other important processes, such as shock formation and
electron transport, and are often seen as direct characteristics
for judgment of the growth stage of the Weibel instability[15].

Experimentally, when space charge effects between the
current filaments have a negligible impact on deflection of
the probe proton, which has been proved using the difference
in deflection between the electric field and the magnetic field,
the magnetic field generated by the Weibel instability can
be transversely imaged by proton radiography[16–18]. The
emergence of the Weibel instability is then manifested as
striations on the proton images. The amount and spatial
wavelength of the proton flux striations, which are related
to the amount and spatial wavelength of the current fila-
ments, are used to indicate the evolution of the instability,
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such as growth, saturation and coalescence of the current
filaments[3, 18].

However, the strength and spatial wavelength of such an
isotropic and stochastic magnetic field still cannot be directly
inferred from the experiments, as far as we are aware of. The
reason for this is given below. The toroidal magnetic fields
have an almost constant amplitude along the longitudinal
direction; their transversal distribution, however, is two-
dimensionally isotropic and stochastic[14]. When a probe
proton passes through the plasma, the deflection distance is
decided by the path integral of the stochastically distributed
magnetic field, i.e.,

∫
B dl. The magnetic field vector is

neutralized by itself during the integration. Instead of
being able to extract the strength and spatial wavelength
of the magnetic field, the striations on the detected proton
images actually only help in giving the averaged result of the
stochastic magnetic field vector along the path of the proton
probe.

In proton radiography of three-dimensionally isotropic
and stochastic magnetic field turbulence, the mean strength
and the main spatial wavelength of the magnetic turbu-
lence can be inferred by extracting the energy spectrum of
the magnetic energy EB(k) from the detected proton flux
distribution[19–21]. It has been verified by numerical demon-
strations and used to evidence dynamo amplification of
magnetic fields in a turbulent plasma[22]. Nevertheless, this
method, which requires three-dimensional isotropy, is not
suitable for the detection of the Weibel-instability-generated
magnetic field, since it is usually developed on the basis of
anisotropy of the plasma[12].

In this paper, by theoretically analyzing proton radiogra-
phy of a two-dimensionally isotropic and stochastic mag-
netic field, a relationship is built between the proton flux
density perturbation on the detection plane and the energy
spectrum of the magnetic field. We demonstrate for the first
time that the mean strength and main spatial wavelength
of the Weibel-instability-generated magnetic field can be
inferred by means of proton radiography. Numerical calcu-
lations based on ray tracing methods are also conducted to
verify our theory.

2. Proton radiography

The Weibel-instability-generated magnetic field has been
investigated previously by many particle-in-cell simulations
and experiments[3–13, 16–18]. It is shown that when the
Weibel instability is excited, current filaments emerge along
the longitudinal direction, i.e., the y direction in our coor-
dinate system[3]. The distribution of the center positions
of these current filaments is two-dimensionally isotropic
and stochastic in the transversal plane, i.e., the x–z plane.
Magnetic fields are distributed around each current filament,
and are azimuthally directed, i.e., B = Bϕ = Bx + Bz .

The longitudinal component By is small, and can be ignored.
Compared to its transversal distribution, the magnetic field
maintains a constant amplitude along the longitudinal direc-
tion, composing a tube-like structure around each current
filament[8–12]. Because of the spatial distribution of the
current filaments, the Weibel-instability-generated magnetic
field is also two-dimensionally isotropic and stochastic[14].
Meanwhile, studies also show that after saturation of the
Weibel instability, the magnetic field is quasi-static[23].

In proton radiography of a magnetic field or an electric
field, the proton probe will be deflected by the field and
acquire a deflection velocity after it passes. The spatial
distribution of the deflection velocity on exiting the field
region is an important parameter. It creates a relationship
between the proton flux density obtained on the detection
plane and the field to be probed. Furthermore, it has also
been proved to be helpful in field reconstruction from the
proton flux density in previous studies[24, 25].

Assuming that the deflection distance of the proton probe
inside the plasma is small and negligible, when a parallel
proton beam has passed through the magnetic field region
along the z direction, the deflection velocity on exiting the
field region can be approximated as

u ≈ u yey ≈
q
γm p

∫ lz

0
Bx dzey, (1)

where q is the proton charge, m p is the proton mass, γ is the
proton relativistic factor and lz is the length of the magnetic
field region in the z direction. Actually, as well as the
emergence of u y , which comes from the coupling between
Bx and uz , a deflection velocity in the x direction, ux , can
also arise due to the coupling between u y and Bz . It is later
proved by the numerical calculations in Section 4 that ux is
several orders of magnitude lower than u y , and is ignored in
our analyses.

After leaving the field region and traversing a distance
L D in free space, the proton probe will be deposited on the
detection plane. The spatial distribution of the deflection ve-
locity finally introduces a perturbation to the spatial density
distribution of the proton probe, which will become visible
on the detection plane if L D is large enough. The density
perturbation is defined as δn/n0 = n/n0−1, where n and n0
are the proton flux densities on the detection plane when the
magnetic field is present and absent, respectively. When the
density perturbation satisfies the linear requirement δn/n0 <

1, the trajectory crossing or overlapping between the protons
would not happen under the chosen spatial resolution. The
linearized continuity equation δn/n0 = −∂d/∂y is then
satisfied, where d is the deflection distance in free space[24].
Because d/L D = u y/uz , the deflection velocity on exiting
the field region then can be reconstructed from

u y = −
uz

L D

∫ y

y0

δn/n0 dy, (2)
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where uz is the initial velocity of the proton in the z direction
and y0 is the spatial boundary of δn/n0 along the y direction
on the detection plane.

It is necessary to mention that the impact of the electric
field on the probe proton, which is mainly due to the
space charge effect between the current filaments, has been
experimentally proved to be negligible when compared with
that of the magnetic field[17, 18]. In this paper, the influence
of the electric field is also not taken into consideration.

3. Energy spectrum of the magnetic field and deflection
velocity

In fluid physics, the velocity autocorrelation tensor is a
commonly used tool to deduce the energy spectrum of
three-dimensional fluid turbulence[26]. In analyzing three-
dimensionally isotropic and stochastic magnetic turbulence,
the autocorrelation tensor of the turbulent magnetic field is
also useful in obtaining the energy spectrum of the magnetic
field[20]. In this paper, the autocorrelation tensor of the two-
dimensionally isotropic, stochastic and static magnetic field
B is defined as

Ri j (p, p′) =
〈
Bi (p)B j (p′)

〉
, (3)

where the subscripts i and j stand for x or z, p and p′ are
two arbitrary positions on the x–z plane, and the bracket 〈 〉
stands for the mean operator. Because of the isotropy of the
magnetic field in the x–z plane, Ri j (p, p′) can be written as
a function of the displacement vector r = p − p′ = rx ex +

rzez using Ri j (r). The two-dimensional Fourier transform of
Ri j (r) is

R̂i j (k) =
1

(2π)2

∫∫
Ri j (r)e−ik·r d2r, (4)

where k = kx ex + kzez . The inverse Fourier transform of
R̂i j (k) is

Ri j (r) =
∫∫

R̂i j (k)eik·rd2k. (5)

Defining an autocorrelation function R(r) with the trace of
the autocorrelation tensor,

R(r) = Ri i (r) = Rxx (r)+ Rzz(r). (6)

In this paper, the subscript i i means that the Einstein
summation convention is used. Because of the isotropy,
Rxx (r) = R(r)/2. Clearly, when r = 0, R(r = 0) actually
stands for the mean energy of the magnetic field, i.e.,
B2

rms = 〈|Bx |
2
+ |By |

2
〉. The subscript rms is an abbreviation

for root mean square. Substituting Equation (5) into
Equation (6) and letting r = 0 yields

R(r = 0) =
∫ 2π

0

∫
∞

0
R̂i i (k) dk · k dϕ, (7)

where ϕ is the polar angle in the k plane. Under the
assumption of two-dimensional isotropy, Equation (7) can
be rewritten as

R(r = 0) =
∫
∞

0
2πk R̂i i (k) dk. (8)

Considering that R(r = 0) corresponds to the magnetic
field energy, the integrand 2πk R̂(k) actually is the energy
spectrum of the magnetic field, and is denoted by

EB(k) = 2πk R̂(k), (9)

where R̂(k) = R̂i i (k). Letting k = kx and kz = 0, we have

EB(kx ) = 2πkx R̂(kx , kz = 0). (10)

Similar to the definition of Ri j (p, p′), the autocorrelation
tensor of the deflection velocity u is defined as

Mi j (p, p′) =
〈
ui (p)u j (p′)

〉
. (11)

Substituting Equation (1) into Equation (11) gives

Myy(rx ) =

(
q
γm p

)2 ∫ lz

0
dz
∫ lz

0
dz′Rxx (r). (12)

Letting rz = z − z′, we get

Myy(rx ) = lz

(
q
γm p

)2 ∫ lz−z

−z
drz Rxx (r). (13)

Because at the outside region of the magnetic field, Rxx (r) ≈
0, the upper and lower integral limits in Equation (13) can
be extended to (−∞,∞) approximately. After substituting
Rxx (r) = R(r)/2 into Equation (13), we have

Myy(rx ) =
lz

2

(
q
γm p

)2 ∫ ∞
−∞

drz R(r). (14)

Equation (14) builds a relationship between the autocorrela-
tion tensors of the two-dimensional magnetic field and the
one-dimensional deflection velocity. The one-dimensional
Fourier transforms of the left- and right-hand sides of
Equation (14) give

left : M̂yy(kx ) =
1

2π

∫
∞

−∞

Myy(rx )e−ikx ·rx drx (15)

and

right : πlz

(
q
γm p

)2

R̂(kx , kz = 0), (16)

where Equation (16) has been written as a two-dimensional
Fourier transform form of R(rx , rz) by letting kz = 0.
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By rewriting M̂yy(kx ) as Eu(kx ), we get

Eu(kx ) = πlz

(
q
γm p

)2

R̂(kx , kz = 0). (17)

The inverse Fourier transform of M̂yy(kx ) has the form

Myy(rx ) =

∫
M̂yy(kx )eikx rx dkx . (18)

At the same time, according to Parseval’s theorem in the one-
dimensional case, it gives that

2π
∫

û2
y(k) dkx =

∫
u2

y(x) dx ≈ 〈u2
y(x)〉lx , (19)

where û y(kx ) = (1/2π)
∫

u y(x)e−ikx x dx .
From Myy(rx ) = 〈uy(x)uy(x + rx )〉we know that, if rx =

0, Myy(rx = 0) = 〈u2
y(x)〉. Thus, by letting rx = 0 and

substituting Equation (18) into Equation (19), we obtain∫
M̂yy(kx ) dkx =

2π
lx

∫
û2

y(k) dkx . (20)

Clearly, M̂yy(kx ) = (2π/ lx )û2
y(kx ). Then, the energy

spectrum of the deflection velocity is deduced as

Eu(kx ) =
2π
lx

û2
y(kx ). (21)

4. Strength and wavelength of the magnetic field

By combining Equations (10), (17) and (21), we get

EB(kx ) =
4π
lzlx

(
γm p

q

)2

kx û2
y(kx ), (22)

which means that a relationship is built between the energy
spectrum of the magnetic field and the spatial spectrum of the
deflection velocity. When the spatial distribution of the one-
dimensional deflection velocity u y(x) is obtained, the energy
spectrum of the two-dimensionally isotropic and stochastic
magnetic field can then be deduced. The method of ob-
taining u y(x) from proton radiography has been presented
in Section 3.

The mean strength of the magnetic field is then acquired
through

B2
rms =

∫
∞

0
dk EB(kx ). (23)

The main spatial wavelength of |B|2, i.e., λ|B|2 = 2π/kx , can
be read from the energy spectrum of the stochastic magnetic
field EB(kx ). The main spatial wavelength of the magnetic

Figure 1. Schematic diagram of proton radiography of a two-dimensionally
isotropic and stochastic magnetic field.

field |B| then equals

λ|B| = λ|B|2 . (24)

5. Numerical verification

In order to validate the above theory, numerical calcula-
tions based on ray tracing methods are conducted to sim-
ulate radiography of the Weibel-instability-generated two-
dimensionally isotropic and stochastic magnetic field[24].

The three-dimensional magnetic field to be radiographed
is pre-set as follows. Two hundred tube-like magnetic field
structures are distributed in a cross-section of lx × lz =

0.8 mm × 0.8 mm in the x–z plane, with the current fila-
ments directed along the y direction, as shown in Figure 1.
The field region in the y direction is from y = 0 mm to
y = 4 mm. According to the Biot–Savart law, the spatial
distribution of each magnetic tube can be expressed as Bp =

[B0(r − r0)/R0] exp[−(r − r0)
2/R2

0] exp(−y2/ l2
y)eϕ , where

r =
√

x2 + z2, eϕ = ex + ey , and R0 and ly denote the
transversal and longitudinal lengths of the tube, respectively.
The subscript p is an abbreviation for pre-set. B0 is the
amplitude of the magnetic field tube and r0 is the transversal
center position of each magnetic tube. For each magnetic
tube, r0 is randomly distributed in the transversal plane.
According to previous experiments and the particle-in-cell
simulations, B0 and R0 are set to be 10 T and 40 µm,
respectively[18]. ly is set to be 1.2 mm, which is long enough
when compared to the transversal length of the magnetic
tube. It allows us to regard the magnetic tube as being
constantly distributed in the longitudinal direction, which,
most importantly, suggests that the isotropy of the pre-set
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Figure 2. (a) Transversal cross-section of the pre-set stochastic magnetic
field tubes at y = 2 mm. (b) Two-dimensional spectrum of the magnetic
field by taking Fourier transforms of the field in (a), which shows an
isotropic feature.

magnetic field is two-dimensional. These parameter settings
correspond to the situation of a thermal anisotropy-driven
Weibel instability during the process of plasma expanding
into the vacuum[18].

The cross-section of the magnetic field strength at y =
2 mm is shown in Figure 2(a). The maximum strength
is about 17 T. This is greater than B0, which results from
the spatial overlap of the magnetic tubes. In Figure 2(b),
the two-dimensional distribution of the magnetic field

in k space B̂p(kx , kz) =

√
|B̂xp(kx , kz)|2 + |B̂zp(kx , kz)|2

suggests that the magnetic field is approximately isotropic
in the x–z plane, where B̂xp(kx , kz) and B̂zp(kx , kz) are
the two-dimensional Fourier transforms of Bxp(x, z) and
Bzp(x, z), respectively. The mean strength of the pre-
set magnetic field Brmsp can be acquired conveniently by
making a spatial average of the magnetic field distribution

Bp(x, z) =
√
|Bxp(x, z)|2 + |Bzp(x, z)|2 in the x–z plane,

Figure 3. One-dimensional energy spectrum of the magnetic field EB (k).
The red line corresponds to the energy spectrum obtained by taking Fourier
transforms of the pre-set magnetic field in Figure 2(a), whereas the blue line
corresponds to the energy spectrum extracted from proton radiography with
Equation (22).

i.e., Brmsp = (1/S)
∫∫

Bp(x, z) dxdz, where S is the
transversal cross-sectional area of the magnetic field region.
It is inferred from Figure 2(a) that Brmsp ≈ 4.51 T.

The energy spectrum of the pre-set magnetic field in
Figure 2(a), EBp(kx ), can be acquired as follows. From the
two-dimensional Parseval’s theorem∫∫

B2(x, z) dx dz = 4π2
∫
|B̂(k)|2 d2k, (25)

we know that B2
rmsp =

∫
(8π3/S)k|B̂p(k)|2 dk, where B̂p(k)

is the one-dimensional spectrum of the magnetic field in

k =
√

k2
x + k2

z space and can be deduced from B̂p(kx , kz) in
Figure 2(b). According to Equation (9), the one-dimensional
energy spectrum of the pre-set magnetic field is then given
as EBp(k) = (8π3/S)k|B̂p(k)|2, shown as the red line in
Figure 3. The blue line corresponds to the energy spectrum
of the magnetic field extracted from the proton radiography,
which will be described in detail later. Because of the
isotropy, EBp(kx ) = EBp(k). The mean strength of the pre-
set magnetic field, when deduced from EBp(kx ) by Brmsp =√∫
∞

0 dk EBp(kx ), is found to be Brmsp ≈ 4.51 T, which
is equal to the result obtained from the spatial averaging
method previously. At the same time, the main wavelength
of the pre-set magnetic field, which is taken from the highest
peak on the energy spectrum of the pre-set magnetic field in
Figure 3, is about λ|B|p = λ|B|2 p ≈ 86 µm.

In this paper, our interest is limited to the case in which
the Weibel instability is collisionless. In proton radiography
of the Weibel-instability-generated magnetic field, the spatial
density perturbation of the proton beam, which is introduced
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from the magnetic field, is small enough to avoid the probe
trajectory crossing or overlapping. Also, space charge effects
between the probe protons are neglected. This allows the ray
tracing method to be used to simulate the process of proton
radiography of the magnetic field. In this paper, the kinetic
energy of the mono-energy probe proton is 10 MeV, emitted
parallel with the z direction from an extended proton source.
The distance from the detection plane to the magnetic field
region is L D = 5 cm. The trajectories of the probe protons
inside the field region are calculated with the Runge–Kutta
algorithm. Outside of the field region, the probe protons drift
during free flight before they reach the detection plane.

Numerical results show that after traversing the field
region, the maximum proton deflection velocity in the y
direction, u ymax, is about 2.1 × 105 m/s. While in the x
direction, the maximum deflection velocity, uxmax, is about
1.5 × 102 m/s, which is about three orders of magnitude
lower than u ymax. This ensures the assumption of u ≈ u yey
in Equation (1). It also indicates that in proton radiog-
raphy of a Weibel-instability-generated magnetic field, the
proton density striations on the detection plane are mainly
contributed by the longitudinal deflection velocity u y , and
the influence introduced to proton radiography by Bz is
negligible.

Figure 4(a) shows the proton density perturbation on the
detection plane. The spatial structures in Figure 4(a) are
quite similar to the results in Figure 2 of the publication
by Huntington et al., which are obtained with both particle-
in-cell simulations and experiments[17]. This also helps to
support the model simplification in our paper.

From Figure 4(a) we can see that δn/n0 < 1, which
indicates that the linearity requirement is satisfied and tra-
jectory crossings or overlappings between the protons do not
happen under our chosen spatial resolution[24]. It allows
us to reconstruct the deflection velocity at the exit of the
field region from the density perturbation in Figure 4(a) with
Equation (2). The spatial distribution of the reconstructed
deflection velocity u ye is shown in Figure 4(b). The one-
dimensional distribution of the extracted u ye at y = 2 mm
is shown as the blue line in Figure 4(c), which is almost
coincident with the deflection velocity integrated from Equa-
tion (1) with the pre-set magnetic field, shown as the red line
in Figure 4(c). In order to distinguish them from the pre-set
values of the magnetic field, the results extracted from the
proton density perturbation are all subscripted with e as an
abbreviation for extracted. The perfect agreement between
the two deflection velocities is due to two reasons. Firstly,
the low-density perturbation in Figure 4(a) indicates that
the trajectory crossings of the probe protons are sufficiently
prevented under the chosen spatial resolution. Secondly, the
density perturbation is almost invisible at the exit of the field
region (not shown), i.e., δn/n0 ≈ 0. This indicates that
the deflection distance inside the field region is negligible
and ensures that the assumption of collimation of the proton

Figure 4. (a) Proton density perturbation δn/n0 on the detection plane when
L D = 5 cm. (b) The extracted two-dimensional distribution of uy . (c) One-
dimensional distributions of uy at y = 2 mm from the extracted results and
the pre-settings.

trajectories in deriving Equation (1) is valid. In other
situations when the maximum of δn/n0 approaches 1 or
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even higher, or the deflection distance inside the field region
is too large to be ignored, the differences between the two
deflection velocities in Figure 4(c) could be more evident[24].

û ye(kx ) is obtained by taking the Fourier transform of the
deflection velocity u ye(x) in Figure 4(c). The extracted one-
dimensional energy spectrum of the magnetic field EBe(kx )

is then obtained by substituting û ye(kx ) into Equation (22),
i.e., EB(kx ) = (4π/ lzlx )(γm p/q)2kx û2

y(kx ), shown as the
blue line in Figure 3.

We can see from Figure 3 that the amplitude and the enve-
lope shape of the extracted magnetic field energy spectrum
are approximately equal to the pre-set ones. Ten peaks are
found in the energy spectrum of the pre-set magnetic field,
marked with red numbers in Figure 3, respectively. For every
red peak, a corresponding peak with a very close wavelength
can be found in the extracted energy spectrum, marked with
blue numbers. For most regions of the magnetic energy
spectrum, the red and blue lines have either close amplitudes
(specifically refer to the regions around peaks 5, 6, 7, 9, 10)
or close peak–valley-averaged amplitudes (specifically refer
to regions around peaks 1, 2, 3, 4, 8). This validates the use
of Equation (22).

In the extracted spectrum, peaks 1 and 2 have close wave-
lengths and evidently higher amplitudes when compared to
the other peaks in the blue line. Therefore, the extracted main
wavelength for the magnetic energy is taken from the average
wavelength of peaks 1 and 2. The result shows that λ|B|2e ≈

74 µm. According to Equation (24), the main wavelength
for the magnetic field then equals λ|B|e ≈ 74 µm. This
extracted value is quite close to the pre-set one, i.e., λ|B|p ≈
86 µm. The extracted mean strength of the magnetic field is
calculated by Equation (23) with the blue energy spectrum
in Figure 3. It gives Brmse ≈ 5.08 T, which agrees well with
the pre-set value, i.e., Brmsp ≈ 4.51 T.

It is necessary to mention that our theoretical analyses
predict that the energy spectra are strictly equal for an ideal
stochastic magnetic field; the difference between the two
energy spectra in Figure 3 could be the result of a lack of
stochasticity of the magnetic field. For an ideal stochas-
tic distribution, the spectrum obtained from the Fourier
transforms could be very smooth. However, the spectrum
obtained from our pre-set magnetic field in Figure 2(a) shows
ten small peaks over the large envelope, which indicates that
the magnetic field distribution is not an ideal one. Actually,
the stochastic fields in our simulations are generated with
two hundred randomly distributed magnetic field tubes of the
same magnitude and structure. It is hard to build an ideal
stochastic field with those tubes. That is the reason which
leads to the small differences between Brmse ≈ 5.08 T and
Brmsp ≈ 4.51 T, and between λ|B|e ≈ 74 µm and λ|B|p ≈
86 µm. Nevertheless, the matching of the positions of the
ten peaks and the clearly seen envelope on the spectra all
indicates that the magnetic field is still a stochastic one,
though not an ideal one.

Comprehensively examining the consistency between the
pre-set values and the extracted results, we conclude that
the method demonstrated above is applicable for extracting
the main wavelength and mean strength of the Weibel-
instability-generated magnetic field with proton radiography.

6. Discussion

In the above demonstration, some ideal model simplifica-
tions are assumed. The situations in experiment, however,
could be much more complicated.

In this paper, all the probe protons have the same kinetic
energy and are emitted from the source at the same time.
Experimentally, the proton probes used in the radiography
are mostly generated through the target normal sheath accel-
eration mechanism. The difference in the proton emission
time and energy spread can broaden the probe duration.
Generally, the probe pulse duration can reach about one
picosecond[27]. Also, the amplitudes and spatial structures
of the magnetic field may not be static, and could change
during the growth of the Weibel instability[13]. The extracted
strength and wavelength are actually time-averaged results
of the real ones. When the magnetic field evolves slowly
during the passage of the proton probe, the strength and
wavelength extraction method demonstrated above could
yield time resolution using radiochromatic film stacks as
the proton detector. However, if the magnetic field evolves
rapidly during the passage of the proton probe, the extraction
method will fail. This should be noticed especially in
the growth stage of the Weibel instability and when the
Weibel instability growth rate is large. Nevertheless, this
strength and wavelength extraction method for the Weibel-
instability-generated magnetic field is mostly capable after
saturation of the instability. For an ion-driven Weibel insta-
bility, the magnetic field duration can be as long as several
nanoseconds after it has been stimulated, and the probe
pulse duration of several picoseconds has a negligible impact
on the time resolution of the radiography[14]. For Weibel
instability driven by electron thermal anisotropy, mostly
investigated with an expanding plasma in the interaction of a
laser pulse with a solid target, the magnetic field duration
after saturation can also reach the range of several tens
of picoseconds, which is also large enough to neglect the
influence introduced by the probe pulse duration[15].

At the same time, as has been discussed in Section 4,
this extraction method is based on the assumption of two-
dimensional isotropy and stochasticity of the magnetic field.
However, in some circumstances, this assumption cannot be
ensured and the magnetic field strength and wavelength ex-
traction method demonstrated above may fail. For example,
at the end of the nonlinear stage of the Weibel instability,
merging of the current filaments is serious. There could
be only several current filaments remaining, in which case
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two-dimensional isotropy and stochasticity are no longer ful-
filled. Nevertheless, under such cases, the Faraday rotation
method is capable of inferring the magnetic field strength
and has been successfully applied in experiments[28].

7. Conclusion

A method to infer the strength and wavelength of the Weibel-
instability-generated magnetic field from the proton radiog-
raphy has been demonstrated in our paper. With theoretical
analyses, it is found that in the proton radiography of a
Weibel-instability-induced magnetic field, which is usually
two-dimensionally isotropic and stochastic, the proton flux
density perturbation on the detection plane can be related to
the energy spectrum of the magnetic field. It further allows
us to obtain the mean strength and main wavelength of the
magnetic field. Using ray tracing methods, a proton beam
has been emitted numerically to simulate radiography of a
two-dimensionally isotropic and stochastic magnetic field
with the pre-set main wavelength equal to approximately
86 µm and the pre-set mean strength equal to approximately
4.51 T. With our extraction method, the main wavelength
and mean strength of the magnetic field, when inferred from
the detected proton density perturbation, are about 74 µm
and 5.08 T, respectively. The consistency between the pre-
set values and the extracted results suggests that, through
the extraction method demonstrated in our paper, the mean
strength and main wavelength of the two-dimensionally
isotropic and stochastic magnetic field can be inferred well
from proton radiography. This could be helpful in first
experimental measurements of the strength and wavelength
of the Weibel-instability-generated stochastic magnetic field.
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